Rapid temporary coiling of the parent artery for the management of intraprocedural aneurysm rupture
Muhammad Waqas1, Kunal Vakharia1, Bennett R Levy2, Steven B Housley1, Rimal H Dossani1, Andrew Gong3, Justin Cappuzzo1, Elad I Levy4
1 Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo; Department of Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, New York, USA 2 Department of Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, New York, USA 3 Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA 4 Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo; Department of Neurosurgery, Gates Vascular Institute at Kaleida Health; Department of Radiology, Jacobs School of Medicine and Biomedical Sciences; Canon Stroke and Vascular Research Center, University at Buffalo; Jacobs Institute, Buffalo, New York, USA
Correspondence Address:
Elad I Levy University at Buffalo Neurosurgery, 100 High Street, B4, Buffalo, NY 14203 USA
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/bc.bc_54_20
|
Intraprocedural rupture (IPR) of an intracranial aneurysm is the most feared complication of primary and stent-assisted coiling because it carries a high risk of morbidity and mortality. The endovascular strategy applied to control IPR depends on the cause of the rupture and stage of the procedure. Rupture during primary or stent-assisted coiling is traditionally managed with the use of continued packing, balloon microcatheter placement, or in rare cases, with parent artery sacrifice. In this technical note, we describe the use of temporary coiling of the parent artery to control IPR in three cases. Temporary parent artery coiling creates a subocclusive state, resulting in aneurysmal blood flow reduction without interruption of blood flow to the distal territory. Flow reduction combined with the thrombogenicity of the previously deployed coils results in hemostasis. In the cases presented here, IPR occurred during the late stage of coiling. In each case, parent artery coiling was performed along with heparin reversal. After confirmation of hemostasis, the coils were retrieved to restore normal blood flow. We demonstrate that the technique of temporary parent artery coiling may be a safe and effective option for the management of IPR during primary or stent-assisted coiling.
|